Introduction

To produce effective collision avoidance behaviours, the
nervous system must be able to extract salient sensory cues
 onfronted with complex spatiotemporal patterns of visual information. However, little is known of how looming sensitive
neurons are influenced by visual complexity. The locust eurons are influenced by visual complexity. The locust
isual system contains a well defined neural pathway mposed of the lobula giant movement detector (LGMD) an is postsynaptic target, the descending contralateral ovement detector (DCMD), that is highly responsive to
omming stimuli'2,3,4. Previous results ${ }^{\text {p }}$ predict that this atheny should be able to respond too approaches of multiple
bijects approaching from diferent trajectories.这

Objectives:

1) To test the effects of object shape on DCMD looming responses.
) To test the effects of paired object approaches on DCMD looming responses
2) To determine if changes in trajectory during approach influence DCMD response profiles.

1 Locust LGMD/DCMD

Compound objects

4 DCMD responses to simple and compound looming objects

8 No effect of non-overlapping

9 Sublinear response during short

Summary

Compound objects

- Looming compound objeets evore onaracteristic DCMD responses. Similiar IIIV V values ev
obiect complexity.

Paired objects

Previous approaches from different regions of the visual field 3 or 4
seconds earier do not affect responses to lo late approaches. Simultaneo
responses.

Compound trajectories

Changes to non-looming trajectories during an approach evoke
rransient, delayed increases in the firing rate.

Conclusions

Encoding of object approach properties is relatively insensitive to object shape.

Responses to individual looming objects during simultaneous or closely timed paired approaches are strongly sublinear.

DCMD activity is affected by the timing and direction of trajectory changes during an approach.

Future studies

- Test for DCMD habituation during repeated approaches of objects
- Test effects of trajectory changes from initial non-looming to looming. Examine effects of colmpound trajectories on behavioural responses - Record DCMD activity of flying ani

References

为

Acknowledgements

